Ruby Programming for
Beginners



Programming

e Operating system - talk to a computer's

hardware
o e.g., Windows, Mac OS X, Linux

e Software

o Programs and apps
o Sends input to operating system
o Receives output from operating system

e Programming language
o (Code used to create software
o E.g., Ruby, Java, C++



Terms to Know

e Framework, library

o Collection of reusable code
o Contains common features
o Lets you write an app faster

Ruby - language ’ Ruby gems - libraries

Ruby on Rails - framework

: )
e




Ruby versus Ruby on Rails

Ral
Ral
Ral

Ral

s is written in the Ruby language
s contains many Ruby gems

s is a framework

s Is used to build web apps



Ruby Philosophy

| believe people want to express themselves when they
program.

They don't want to fight with the language.

Programming languages must feel natural to programmers.

| tried to make people enjoy programming and concentrate
on the fun and creative part of programming when they use

Ruby.

-- Yukihiro "Matz" Matsumoto, Ruby creator



Basic Programming Structures

e Variables - labels that hold information

e Types of information - text, numbers,
collections

e Methods and operators - do stuff with

variables

o e.g., + for addition, puts to print output, reverse to
reverse text

e Loops - do the same action several times
e Printing - display something on the screen
(use puts), or save it to a file



Let's start coding!



Open your terminal

e A.k.a. "command line", "shell", "prompt”

e In Windows: git bash =&
Z3

Cile |stsi2in

e Mac OS X and Ubuntu Linux; Terminal




Prompt

e Terminals show a line of text when:
o Youlogin
o A command finishes

e Called the "prompt”

o Ends with a dollar sign
e \When instructions start with "s "or "> ",

just type the rest of the line into the terminal
e Give the terminal a command:

S irb

Then hit Enter



irb: Interactive Ruby

e IRB has its own prompt that ends with >:
S 1rb
>

e Enter the exit command to return to the

terminal:
> ex1t

$
e \Vindows users: can't use backspace, delete,

or arrow keys in IRB? Try:

S irb —--noreadline



Variables

e A variable holds information
e \We give it a name so we can refer to it
e The info it holds can be changed

S irb

> my variable = 5.3

—> 5.3

> another variable = "hi"

—> "Rqm

> my variable = "good morning"

=> "good morning"



Variable Assignment

e Assignment - store a value in a variable

o Done with equals sign:
> variable = "my value"

e Right side of equals sign is evaluated,
then value stuck into left side
> sum = 5 + 3
=> 8
> sum = sum + Z
=> 10



Naming Variables

e Can't name it just anything

e Choose from:
o All letters -- folders = [true, false]
o Letters, then numbers -- data2 = 2.0
o Letters and underscores -- first variable = 1

o All of the above -- some valuel = 'morning'
e Tryout:

o Hyphens -- bad-name = 2

o Starting with a number -- 3var = 'something'

o Only numbers -- 123 = "abc"



Common Types of Information

String (text)

o Like name, email, address fields from InstallFest

Number
o Like temperature field from InstallFest

Collection
o Arrays and hashes

Boolean (true, false)



Strings

e A string is text
e \Wrap text in a pair of quotation marks:

O > 'Single gquotes are fine'
O > "So are double quotes”
e Don't mix and match the quotes:

O > "But you have to'
O > 'match the quotes"



String Exercise

1. Create string variables first name,

last name, and favorite color
o Set the values to whatever you like
2. Create the sentence "Hi, my name is

(first_ name) (last name) and my favorite
color is (favorite color)"

Hint: use the + operator to combine strings:
"string 1" + "string 2"



Numbers

e Integers - numbers without decimal points, e.
d., o, -2

e Floats - numbers with decimal points,
e.g., 3.14, -0.123

e Operators you can use with numbers:
+, =, %,/




Number Exercise 1

How are these results different?

e Divide an integer by an integer
o eg.,5 / 2

e Divide an integer by a float
o eg.,5/ 2.0



Number Exercise 2

1. Assign your two favorite numbers to two
variables, numl and num?

2. Compute the sum (+), difference (-),

quotient (/), and product (*) of num1 and
num

3. Assign these values to variables sum,
difference, quotient, and product



Collections

e Array, a.k.a. list
o Collection of values
o > [1, 3, 5, 7]
o > ["h1i", "there", 'folks']
e Hash, a.k.a. dictionary, map, associative

array

o Collection of keys and values

o > {1 => 'one', 2 => "two'}

o > {'this' => 'that', "who" => 2.5}



Array Indexing

e Items in an array are stored in the order they
were added

e Access an item via its index

e Ruby starts counting at 0, not 1

> fruits = ['kiwl', 'strawberry', 'plum']
=> ['kiw1i', 'strawberry', 'plum']

> fruits[0]

=> 'kiwi'

> fruits[2]

=> 'plum'



Array Exercise

1. Create an array variable called
grocery list
2. Include at least five items from your grocery

list in the array
o Use strings to represent groceries



Array Index Exercise

e Using your grocery list array:
e \What do you think will be at index 07
e \What about index 57?
e Access index 0
e Access index 5

Remember: Ruby starts counting at 0, not 1



Hashes

e Refer to values by keys, not indices
e Each member of a hash is a pair:
key => value

> en to es = {'one' => 'uno', 'two' =>
'dos', 'three' => 'tres'}

:> {Hone":>"unO", "tWO":>"dOS", "three":>"
tres"}

> en to es['one']

=> "uyno"



Booleans

@ true and false

e Some code evaluates to true or false:

o Numeric comparison:
> 1 < 2 > 1 ==
=> true => true
> 2 >= 5 > 18.0 !'= 18.0
=> false => false
o String equality:
> "yellow" == "blue"
=> false
> "yellow" != "blue"
=> true



Boolean Exercise

1. Assign your favorite color to a variable
named favorite color

2. Assign a different color to a variable named
not favorite color

3. Test to see if these variables are equal



Methods

e [f objects (like strings, integers, and floats)
are the nouns in the Ruby language, then
methods are like the verbs.

-- Chris Pine's "Learn to Program”

e Do stuff to values

e Call a method on a value using dot "."

>

'hello there'.reverse
=> "ereht olleh"”



Method Exercise

1. Create a string variable called o1d string
and assign it the value "Ruby is cool"

2. Use string methods to modify o1d string
so that it is now "LOOC SI YBUR"

3. Assign this to another variable called
new string

Hint: look at the string methods upcase and
reverse



Loops

e Used to do something repeatedly
e Useful with arrays and hashes

> cities = ['Lexington', 'Louisville',
'Indianapolis']

> cities.each do |city|

?> puts "I live 1n " 4+ city

> end

I 1live in Lexington

I live in Louisville

I live 1n Indianapolis

=> ["Lexington", "Louisville", "Indianapolis"]



Loop Exercise

1. Create an array of four places you would like
to visit
2. Print out each of these places using a loop

Example output:

"T would like to visit Barcelona"
"T would like to wvisit Ireland"
"T would like to wvisit Alaska"

"T would like to visit New Orleans"

Hint: use the each method on your array



Summary

Programming in the Ruby language with the
Ruby on Rails framework

Try out Ruby code in IRB

Use variables to label data and manipulate it
Data types: strings, integers, floats, arrays,
nashes, and Booleans

Manipulate variables with methods and
operators

Use loops to do something repeatedly,
maybe looping over an array or hash




Questions?



