
Ruby Programming for
Beginners

Programming

● Operating system - talk to a computer's
hardware
○ e.g., Windows, Mac OS X, Linux

● Software
○ Programs and apps
○ Sends input to operating system
○ Receives output from operating system

● Programming language
○ Code used to create software
○ E.g., Ruby, Java, C++

● Framework, library
○ Collection of reusable code
○ Contains common features
○ Lets you write an app faster

Ruby - language Ruby gems - libraries

Ruby on Rails - framework

Terms to Know

Ruby versus Ruby on Rails

● Rails is written in the Ruby language
● Rails contains many Ruby gems
● Rails is a framework
● Rails is used to build web apps

Ruby Philosophy

I believe people want to express themselves when they
program.
They don't want to fight with the language.
Programming languages must feel natural to programmers.
I tried to make people enjoy programming and concentrate
on the fun and creative part of programming when they use
Ruby.

-- Yukihiro "Matz" Matsumoto, Ruby creator

Basic Programming Structures

● Variables - labels that hold information
● Types of information - text, numbers,

collections
● Methods and operators - do stuff with

variables
○ e.g., + for addition, puts to print output, reverse to

reverse text
● Loops - do the same action several times
● Printing - display something on the screen

(use puts), or save it to a file

Let's start coding!

Open your terminal

● A.k.a. "command line", "shell", "prompt"
● In Windows: git bash

● Mac OS X and Ubuntu Linux: Terminal

Prompt

● Terminals show a line of text when:
○ You log in
○ A command finishes

● Called the "prompt"
○ Ends with a dollar sign

● When instructions start with "$ " or "> ",
just type the rest of the line into the terminal

● Give the terminal a command:
$ irb
Then hit Enter

irb: Interactive Ruby

● IRB has its own prompt that ends with >:
$ irb
>

● Enter the exit command to return to the
terminal:
> exit
$

● Windows users: can't use backspace, delete,
or arrow keys in IRB? Try:
$ irb --noreadline

Variables

● A variable holds information
● We give it a name so we can refer to it
● The info it holds can be changed
$ irb

> my_variable = 5.3
=> 5.3

> another_variable = "hi"

=> "hi"

> my_variable = "good morning"

=> "good morning"

Variable Assignment

● Assignment - store a value in a variable
○ Done with equals sign:

> variable = "my value"

● Right side of equals sign is evaluated,
then value stuck into left side
> sum = 5 + 3
=> 8
> sum = sum + 2
=> 10

Naming Variables

● Can't name it just anything
● Choose from:

○ All letters -- folders = [true, false]
○ Letters, then numbers -- data2 = 2.0
○ Letters and underscores -- first_variable = 1
○ All of the above -- some_value1 = 'morning'

● Try out:
○ Hyphens -- bad-name = 2
○ Starting with a number -- 3var = 'something'
○ Only numbers -- 123 = "abc"

Common Types of Information

● String (text)
○ Like name, email, address fields from InstallFest

● Number
○ Like temperature field from InstallFest

● Collection
○ Arrays and hashes

● Boolean (true, false)

Strings

● A string is text
● Wrap text in a pair of quotation marks:

○ > 'Single quotes are fine'
○ > "So are double quotes"

● Don't mix and match the quotes:
○ > "But you have to'
○ > 'match the quotes"

String Exercise

1. Create string variables first_name,
last_name, and favorite_color
○ Set the values to whatever you like

2. Create the sentence "Hi, my name is
(first_name) (last_name) and my favorite
color is (favorite_color)"

Hint: use the + operator to combine strings:
"string 1" + "string 2"

Numbers

● Integers - numbers without decimal points, e.
g., 5, -2

● Floats - numbers with decimal points,
e.g., 3.14, -0.123

● Operators you can use with numbers:
+, -, *, /

Number Exercise 1

How are these results different?
● Divide an integer by an integer

○ e.g., 5 / 2
● Divide an integer by a float

○ e.g., 5 / 2.0

Number Exercise 2

1. Assign your two favorite numbers to two
variables, num1 and num2

2. Compute the sum (+), difference (-),
quotient (/), and product (*) of num1 and
num2

3. Assign these values to variables sum,
difference, quotient, and product

Collections

● Array, a.k.a. list
○ Collection of values
○ > [1, 3, 5, 7]
○ > ["hi", "there", 'folks']

● Hash, a.k.a. dictionary, map, associative
array
○ Collection of keys and values
○ > {1 => 'one', 2 => 'two'}
○ > {'this' => 'that', "who" => 2.5}

Array Indexing

● Items in an array are stored in the order they
were added

● Access an item via its index
● Ruby starts counting at 0, not 1
> fruits = ['kiwi', 'strawberry', 'plum']

=> ['kiwi', 'strawberry', 'plum']

> fruits[0]

=> 'kiwi'

> fruits[2]

=> 'plum'

Array Exercise

1. Create an array variable called
grocery_list

2. Include at least five items from your grocery
list in the array
○ Use strings to represent groceries

Array Index Exercise

● Using your grocery_list array:
● What do you think will be at index 0?
● What about index 5?
● Access index 0
● Access index 5

Remember: Ruby starts counting at 0, not 1

Hashes

● Refer to values by keys, not indices
● Each member of a hash is a pair:

key => value
> en_to_es = {'one' => 'uno', 'two' =>
'dos', 'three' => 'tres'}

=> {"one"=>"uno", "two"=>"dos", "three"=>"
tres"}

> en_to_es['one']

=> "uno"

Booleans

● true and false
● Some code evaluates to true or false:

○ Numeric comparison:
> 1 < 2 > 1 == 1
=> true => true
> 2 >= 5 > 18.0 != 18.0
=> false => false

○ String equality:
> "yellow" == "blue"
=> false
> "yellow" != "blue"
=> true

Boolean Exercise

1. Assign your favorite color to a variable
named favorite_color

2. Assign a different color to a variable named
not_favorite_color

3. Test to see if these variables are equal

Methods

● If objects (like strings, integers, and floats)
are the nouns in the Ruby language, then
methods are like the verbs.
-- Chris Pine's "Learn to Program"

● Do stuff to values
● Call a method on a value using dot "."
> 'hello there'.reverse

=> "ereht olleh"

Method Exercise

1. Create a string variable called old_string
and assign it the value "Ruby is cool"

2. Use string methods to modify old_string
so that it is now "LOOC SI YBUR"

3. Assign this to another variable called
new_string

Hint: look at the string methods upcase and
reverse

Loops

● Used to do something repeatedly
● Useful with arrays and hashes
> cities = ['Lexington', 'Louisville',
'Indianapolis']

> cities.each do |city|

?> puts "I live in " + city

> end

I live in Lexington

I live in Louisville

I live in Indianapolis

=> ["Lexington", "Louisville", "Indianapolis"]

Loop Exercise

1. Create an array of four places you would like
to visit

2. Print out each of these places using a loop

Example output:
"I would like to visit Barcelona"
"I would like to visit Ireland"
"I would like to visit Alaska"
"I would like to visit New Orleans"

Hint: use the each method on your array

Summary

● Programming in the Ruby language with the
Ruby on Rails framework

● Try out Ruby code in IRB
● Use variables to label data and manipulate it
● Data types: strings, integers, floats, arrays,

hashes, and Booleans
● Manipulate variables with methods and

operators
● Use loops to do something repeatedly,

maybe looping over an array or hash

Questions?

